Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCSE (9-1) In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 1MA1_1H_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.

Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.

Choice of method

If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.

If no answer appears on the answer line, mark both methods then award the lower number of marks.
I ncorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

I gnoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (e.g.. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (e.g.. incorrect algebraic simplification).

Probability

Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g. $3.5-4.2$) then this is inclusive of the end points (e.g. 3.5, 4.2) and all numbers within the range.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
P process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark
B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/1H				
Question	Working	Answer	Mark	Notes
5		70.5	P1 P1 P1 P1 A1	starts process of Pythagoras e.g. $5^{2}+12^{2}$ complete process for Pythagoras e.g. $\sqrt{5^{2}+12^{2}}$ or $\sqrt{25+144}$ or $\sqrt{169}(=13)$ (dep P1 for Pythagoras) process of adding all the lengths e.g. $5+5+12+12+" 13 "$ (=47) (indep) process of multiplying at least 2 lengths by 1.5 cao SC: any evidence of working with Pythagoras award the P1 or P2
6		comparison	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	starts to manipulate expression e.g. $3 y=9 x-6$ or $3 y=9 x-5$ gives equation(s) which can be used to show that the gradients of the two lines are the same e.g. y $=3 x-5 / 3$
7		72	P1 P1 A1	for showing the process of $30 \times 60(=1800)$ or $20 \times 54(=1080)$ (dep P1) for showing the complete process e.g. ("1800" - " 1080 ") $\div 10$ concluding the answer is 72 (and not 66)
8 (a) (b)		$\begin{gathered} 0.00000797 \\ 6.3 \times 10^{7} \end{gathered}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	cao for partial calculation involving powers of 10 e.g. $0.63 \times 10^{5--3}$ or 6.3×10^{n} where $n \neq 7$ or for $n \times$ 10^{8} or for 63000000 cao
9		500	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	recognition of 1.2 or 120% oe eg $600 \div 1.2$ oe or $x \times 1.2=600$ oe or $120 \%=600$ cao
10		$\begin{gathered} x^{3}+6 x^{2}+11 x+ \\ 6 \end{gathered}$	M1 M1 A1	for method to find the product of any two linear expressions (3 correct terms) e.g. $x^{2}+x+2 x+2$ or $x^{2}+2 x+3 x+6$ or $x^{2}+x+3 x+3$ for method of multiplying out remaining products, half of which are correct (ft their first product) e.g. $x^{3}+x^{2}+2 x^{2}+3 x^{2}+2 x+3 x+6 x+6$ cao

Paper: 1MA1/1H				
Question	Working	Answer	Mark	Notes
(a) (b) (c)		$\begin{gathered} 1,-3 \\ -0.75,2.75 \\ -2.8 \end{gathered}$	B1 B1 B1	$\begin{aligned} & \text { cao } \\ & \text { accept }-0.7 \text { to }-0.8,2.7 \text { to } 2.8 \\ & \text { cao } \end{aligned}$
(b)		$\begin{equation*} \frac{1}{9} \tag{a} \end{equation*}$ $\frac{16}{25}$	M1 A1 M1 A1	for showing a method using either reciprocal or square root e.g. $\frac{1}{n}$ or 9 seen cao Accept $\pm \frac{1}{9}$ or 0.1 recurring for showing cube root of 64 as 4 and the cube root of 125 as 5 or $\frac{16}{n}(n \neq 25)$ or $\frac{n}{25}(n \neq 16)$ or an intention to find the cube root and square. cao Accept 0.64
(a) (b)		$y=\frac{9}{x^{2}}$ $\frac{3}{4}$	M1 A1 M1 A1	begins to work with $y=\frac{k}{x^{2}}$ oe e.g. subs of a pair of numbers into $y=\frac{k}{x^{2}}$ or states $k=9$ for $y=\frac{9}{x^{2}}$ Accept $y=9 x^{-2}$ ft (dep on previous M1) subs $y=16$ into proportional formula of the form $y=\frac{k}{x^{2}}$ oe oe

Paper: 1MA1/1H				
Question	Working	Answer	Mark	Notes
14		$\frac{1}{3}$	P1 P1 P1 A1	process to solve the problem e.g. $\frac{3}{10} \times \frac{4}{9}\left(=\frac{12}{90}=\frac{2}{15}\right)$ OR finds the number of white circles for their chosen number OR for $9: 21$ (or a multiple of $9: 21$) second step of the process e.g. $\frac{7}{10} \times \frac{2}{7}\left(=\frac{14}{70}=\frac{2}{10}=\frac{1}{5}\right)$ OR finds the number of black circles for their chosen number OR for a multiple of $2: 5$ where the ratio parts sum to " 21 " for complete process e.g. " $\frac{2}{15} "+" \frac{1}{5} "\left(=\frac{4}{30}+\frac{6}{30}\right)$ OR finds the total number of circles for their chosen number OR for 3 ratios that could be used to solve the problem eg $9: 21$ with $4: 5$ with $6: 15$ for $\frac{1}{3}$ oe
15 (a) (b)		$3.5 \text { to } 4.5$ more	M1 M1 A1 C1	substitution into formula $\frac{1}{3} \pi r^{2} h$ of chosen values for r and V (accept $r=5.13$ and $V=98$) and starts rearrangement e.g. multiplies by 3 , divides by π or divides by r^{2} (both sides) uses estimates in calculation e.g. $\frac{3 \times 100}{3 \times 25}$ (or in rearranged formula) or $\frac{12}{\pi}$ arrives at a single value from estimate in the range 3.5 to 4.5 ft e.g. more since number in numerator goes up; numbers in denominator go down.
16		$\begin{gathered} 2(2 n-3) \\ \text { even } \end{gathered}$	C1 C1 C1 C1	correct expansion of brackets to give at least 3 terms from $n^{2}-2 n-2 n+4$ arrives at $n^{2}-2-n^{2}+4 n-4$ oe reduces to $2(2 n-3)$ or $4 n-6$ for conclusion e.g. $2(2 n-3)$ always even, $4 n-6$ is always even since both are even numbers, they are multiples of 2 .

Question	Working	Answer	Mark	Notes
17		$\frac{28}{72}$	P1	for $\frac{6}{8}$ or $\frac{2}{8}$ or $\frac{7}{8}$ or $\frac{1}{8}$ oe seen on diagram or in a calculation
			P1	for $\frac{7}{9} \times \frac{2}{8}$ or $\frac{2}{9} \times \frac{7}{8}$ or $\frac{14}{72}$ oe \quad for $\frac{7}{9} \times \frac{6}{8}$ or $\frac{2}{9} \times \frac{1}{8}$ or $\frac{42}{72}$ or $\frac{2}{72}$ or $\frac{44}{72}$ oe
			P1	for $\frac{7}{9} \times \frac{2}{8}+\frac{2}{9} \times \frac{7}{8} \quad$ for $1-\left(\frac{7}{9} \times \frac{6}{8}+\frac{2}{9} \times \frac{1}{8}\right)$ or $1-\left({ }^{\frac{42}{72}}{ }^{\prime \prime}+"^{\frac{2}{72}} "^{\prime}\right)$
				$\begin{array}{l\|l} \text { or " } \frac{14}{72} "+" \frac{14}{72} \text { "oe } & \text { or } 1-" \frac{44}{72} " \text { oe } \end{array}$
			A1	oe SC B1 for $\frac{14}{81}$ B2 for $\frac{28}{81}$
18		$y=-2 x+21$	P1	shows evidence of understanding that $A C$ is perpendicular to $D B$, or states the gradient of $D B$ as
			P1	shows a process to find the gradient of a perp. line e.g. use of $-\frac{1}{m}$ or states $y=-2 x+\mathrm{c}$ or states the gradient of AC as -2
			P1	(dep on P2) for sub. of $x=5, y=11$ into $y=m x+c$ where m is their found gradient for AC.
			A1	oe

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/1H}

\hline Question \& Working \& Answer \& Mark \& Notes

\hline \multirow[t]{3}{*}{19} \& \& \multirow[t]{3}{*}{$$
\frac{2}{5}
$$} \& P1 \& for first step to solve the problem e.g. $\overrightarrow{A C}=-\mathbf{a}+\mathbf{c}$ or $\overrightarrow{O X}=\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{c}$ or demonstrates the location of D and X on the diagram

\hline \& \& \& P1

P1 \& | for a correct vector statement using $\overrightarrow{C D}$ eg $\overrightarrow{C D}=\overrightarrow{C X}+\overrightarrow{X D}$ or $\overrightarrow{C D}=\overrightarrow{O D}-\overrightarrow{O C}$ or $\overrightarrow{O D}=\frac{7}{2}$ c or $\overrightarrow{C D}=2.5 \mathrm{c}$ oe |
| :--- |
| for a correct equation or ratio using k eg equating $\overrightarrow{X D}=3 \mathbf{c}-\frac{1}{2} \mathbf{a}=\frac{1}{2}(-\mathbf{a}+\mathbf{c})+\frac{1}{k} \mathbf{c}$ or $\frac{\overrightarrow{O D}}{\overrightarrow{O C}}=\frac{k+1}{k}$ or $k=\frac{1}{2.5}$ or using a ratio approach eg $(\overrightarrow{O C}: \overrightarrow{C D})=k: 1=1: 2.5$ |

\hline \& \& \& A1 \& cao

\hline \multirow[t]{5}{*}{20} \& \& \[
x=-\frac{24}{5}

\] \& M1 \& \multirow[t]{2}{*}{| for substitution of a rearrangement of $y-3 x=13$ e.g. $(3 x+13)^{2}+x^{2}=25$ |
| :--- |
| (dep M1) for expansion of bracket after substitution (at least 3 terms correct out of the 4 terms) e.g. $9 x^{2}+39 x+39 x+169$ |}

\hline \& \& $$
y=-\frac{7}{5}
$$ \& M1 \&

\hline \& \& $$
x=-3,
$$ \& M1 \& for forming quadratic ready for solving e.g. $10 x^{2}+78 x+144(=0)$

\hline \& \& $y=4$ \& M1 \& for factorising e.g. $(5 x+24)(x+3)(=0)$ oe

\hline \& \& \& A1 \& | $x=-\frac{24}{5}, y=-\frac{7}{5}$ and $x=-3, y=4$ |
| :--- |
| SC: B1 (if M0) for all 4 values mis-associated or one correct pair of values or values given as coordinates. |

\hline
\end{tabular}

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ± 5 은
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
1		Diagram enlarged. Right axis has been labelled. Crosses have been changed to solid circles.	Standard mark scheme but in (c) accept 12 to 14
4		Diagram enlarged. Arrows removed. Dashed lines at the top and left of the square extended. Dashes made longer and thicker.	Standard mark scheme
5		Diagram enlarged. Left hand side and top of shape labelled as well. Wording added 'The marked angles are right angles.' Braille only: will add labels $A B C D$ etc. and information about the diagrams.	Standard mark scheme
10		x has been changed to y	Standard mark scheme with x replaced by y
11		Diagram enlarged.	Standard mark scheme if on 2 mm grid, otherwise apply greater tolerance.
13		Table turned to vertical format.	Standard mark scheme
15		Only changes are to the formula box for a cone: diagram enlarged, dashes made longer and thicker, arrow heads changed to open headed arrows.	Standard mark scheme
18		Diagram enlarged. Dashed line added from B to D	Standard mark scheme
19		Diagram enlarged. Diagonal line added from A to C and X has been marked on the line as the midpoint.	Standard mark scheme
21		Diagram enlarged. Angle arcs made smaller.	Standard mark scheme

PAPER: 1MA1_1F

Question		Modification	Mark scheme notes	
22		Diagram enlarged. Labels ‘ x cm’ added to the left and right side of the diagram. Dotted lines added between $B P$ and $B Q$	Standard mark scheme	

